BEE QUESTION PAPER SOLUTION MAY 2018(CBCGS)

Q1] a) What is the difference ideal source and actual source? Illustrate the concept using the V-I characteristics of voltage and current source.

Solution:-
A voltage source is a two terminal device whose voltage at any instant of time is constant and is independent of the current drawn from it.

Ideal voltage source have zero internal resistance practically an ideal voltage source cannot be obtained.

Source having some amount of internal resistance are known as practical voltage source due to this internal resistance voltage drop takes place and it causes the terminal voltage to reduce.

Q1] b) In a balanced three phase circuit the power factor is 0.866 . what will be the ratio of two wattmeter reading if the power is measured using two wattmeter

Solution:-
$\mathrm{Pf}=0.866$
$\cos \varphi=0.866$
$\varphi=\cos ^{-1} 0.866$
$\varphi=30.00$
$\tan \varphi=\tan (30.00)=0.57735$
$\tan \varphi=\sqrt{3} \frac{\left(W_{1}-W_{2}\right)}{\left(W_{1}+W_{2}\right)}$
$\frac{0.57735}{\sqrt{3}}=\frac{\left(W_{1}-W_{2}\right)}{\left(W_{1}+W_{2}\right)}$
$0.333\left(\left(W_{1}+W_{2}\right)=\left(W_{1}-W_{2}\right)\right.$
$0.333 W_{2}+W_{2}=W_{1}-0.333 W_{1}$
$\frac{W_{1}}{W_{2}}=\frac{1.333}{0.667}$
$\frac{W_{1}}{W_{2}}=1.9985$

Q1] c)calculate $\boldsymbol{R}_{A B}$

Solution:-

$15+60=75 \Omega$ \qquad (resistors are in series)
$30+30=60 \Omega$ \qquad (resistors are in series)

Now, resistor 75Ω and 60Ω are in parallel,
$75|\mid 60=33.33 \Omega$

Now 33.33Ω and 40Ω are in series.
$33.33+40=73.33 \Omega$
$R=73.33 \Omega$

Q1] d) Derive the equation for resonance frequency for a parallel circuit in which a capacitor is connected in parallel with a coil having resistance \mathbf{R} and inductive reactance X_{L}. What is the resonance frequency if inductor is ideal?

Solution:-

Consider a parallel circuit consisting of a coil and a capacitor as shown below. The impedances of two branches are:-
$\overline{Z_{1}}=R+j X_{L} \quad \overline{Z_{2}}=-j X_{C}$
$\overline{Y_{1}}=\frac{1}{\overline{Z_{1}}}=\frac{1}{R+j X_{L}}=\frac{R-j X_{L}}{R^{2}+X_{L}^{2}} \quad \overline{Y_{2}}=\frac{1}{\overline{Z_{2}}}=\frac{1}{-j X_{C}}=\frac{j}{X_{C}}$
Admittance of the circuit $\quad \bar{Y}=\bar{Y}_{1}+\bar{Y}_{2}$
$\bar{Y}=\frac{R-j X_{L}}{R^{2}+X_{L}^{2}}+\frac{j}{X_{C}} \quad=\frac{R}{R^{2}+X_{L}^{2}}-j\left(\frac{X_{L}}{R^{2}+X_{L}^{2}}-\frac{1}{X_{C}}\right)$

At resonance the circuit is purely resistive. Therefore, the condition for resonance is.
$\frac{X_{L}}{R^{2}+X_{L}^{2}}-\frac{1}{X_{C}}=0$
$\frac{X_{L}}{R^{2}+X_{L}^{2}}=\frac{1}{X_{C}}$
$X_{L} X_{C}=R^{2}+X_{L}^{2}$
$\omega_{0} L \frac{1}{\omega_{0} C}=R^{2}+\omega_{0}^{2} L^{2}$
$\omega_{0}^{2} L^{2}=\frac{L}{C}-R^{2}$
$\omega_{0}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
$f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
Where f_{0} is called as the resonant frequency of the circuit.
If R is very small as compared to L then
$\omega_{0}=\sqrt{\frac{1}{L C}}$
$f_{0}=\frac{1}{2 \pi \sqrt{L C}}$
DYNAMIC IMPEDANCE OF A PARALLEL CIRCUIT.
At resonance the circuit is purely resistive the real part of admittance is $\frac{R}{R^{2}+X_{L}^{2}}$. Hence the dynamic impedance at resonance is given by,

$$
Z_{D}=\frac{R^{2}+X_{L}^{2}}{R}
$$

At resonance,
$R^{2}+X_{L}^{2}=X_{L} X_{C}=\frac{L}{C}$
$Z_{D}=\frac{L}{C R}$

Q1] e) What are the classification of DC motor? Specify one application for each one. (4)
Solution:-
Depending upon the method of excitation of field winding ,DC machine are classified into two classes:-

1) Separately excited machines.
2) Self excited machines.

SEPARATELY EXCITED MACHINES

In separately excited machines the field winding is provided with a separate DC source to supply the field current as shown in figure.

SELF EXCITED MACHINES

In case of self excited machines no, separate source is provided to drive the field current, but the field current is driven by its own emf generated across the armature terminals when the machine works as a generator self excited machine are further classified into the three types, depending upon the method in which the field winding is connected to the armature:
a) SHUNT WOUND MACHINES

b) SERIES WOUND MACHINES

c) COMPOUND WOUND MACHINES

Q1] f) Derive emf equation of a single phase transformer

Solution:-

EMF EQUATION.

As the primary winding is excited by a sinusoidal alternating voltage, an alternating current flows in the winding producing a sinusoidally varying flux φ in the core.

$$
\varphi=\varphi_{m} \sin \omega t
$$

As per Faraday's law of electromagnetic induction an emf e_{1} is induced in the primary winding.
$e_{1}=-N_{1} \frac{d \varphi}{d t}$
$e_{1}=-N_{1} \frac{d}{d t}\left(\varphi_{m} \sin \omega t\right)$
$e_{1}=-N_{1} \varphi_{m} \omega \cos \omega t=-N_{1} \varphi_{m} \omega \sin \left(\omega t-90^{\circ}\right)=2 \pi f N_{1} \varphi_{m} \omega \sin \left(\omega t-90^{\circ}\right)$
Maximum value of induced emf $=2 \pi f \varphi_{m} N_{1}$
Hence, rms value of induced emf in primary winding is given by,
$E_{1}=\frac{E_{\max }}{\sqrt{2}}=\frac{2 \pi f N_{1} \varphi_{m}}{\sqrt{2}}=4.44 f N_{1} \varphi_{m}$
Similarly rms value of induced emf in the secondary winding is given by,
$E_{2}=4.44 f N_{2} \varphi_{m}$
Also, $\frac{E_{1}}{N_{1}}=\frac{E_{2}}{N_{2}}=4.44 f \varphi_{m}$
Thus emf per turn is same in primary and secondary winding and an equal emf is induced in each turn of the primary and secondary winding.

Solution:-

$I_{3}-I_{2}=6$
Applying KVL to mesh 1
$-36-12\left(I_{1}\right)+6\left(I_{1}-I_{2}\right)=0$
$-12 I_{1}+6 I_{1}-6 I_{2}=36$
$-6 I_{1}-6 I_{2}=36$
$6 I_{1}+6 I_{2}=-36$
Applying KVL to mesh 2
$-6\left(I_{2}-I_{1}\right)+5 I_{2}+12=0$
$-6 I_{2}+6 I_{1}+5 I_{2}+12=0$
$6 I_{1}-I_{2}=-12$
From (1), (2) and (3)
$I_{1}=-2.57 A, I_{2}=-3.428 A$ and $I_{3}=2.571 A$
Current through $5 \Omega=3.428(\leftarrow) \mathrm{A}$

Q2] b) An emf of 250 V is applied to an impedance $Z_{1}=(12.5+j 20) \Omega$. An impedance Z_{2} is added in series with Z_{1}, the current become half of the origin and lead the supply voltage by 20°. Determine Z_{2}

Solution:-
$V=250 \angle 0^{\circ} \quad Z_{1}=12.5+20 j$
$I_{1}=\frac{\bar{v}}{Z_{1}}=\frac{250 \angle 0^{\circ}}{12.5+20 j}=\frac{250 \angle 0^{\circ}}{23.5849 \angle 57.99}$
$I_{1}=10.600 \angle-57.99$
$I_{2}=\frac{250 \angle 20^{\circ}}{Z_{2}}$
$\frac{I_{1}}{2}=\frac{250 \angle 20^{\circ}}{Z_{2}}$
$Z_{2}=\frac{500 \angle 20^{\circ}}{I_{1}}$
$Z_{2}=\frac{500 \angle 20^{\circ}}{10.600 \angle-57.99}$
$Z_{2}=47.1698 \angle 77.99$
$Z_{2}=9.815+46.131 j$

Q2] c) Determine the potential difference $V_{A B}$ for the given network

Solution:-

The resistor of 3Ω is connected across a short circuit. Hence it gets shorted.
$I_{1}=\frac{5}{2}=2.5 \mathrm{~A}$
$I_{2}=2 A$
Potential difference, $V_{A B}=V_{A}-V_{B}$
Writing KVL equation for the path A to B,
$V_{A}-2 I_{1}+8-5 I_{2}-V_{B}=0$
$V_{A}-2(2.5)+8-5(2)-V_{B}=0$
$V_{A}-V_{B}=7$
$V_{A B}=7 V$

Q3] a) When a voltage of $100 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied to an impedance A current taken is 8 A lagging and power is 120 W . When it is connected to an impedance B the current is 10 A leading and power is 500 W . what current and power will be taken if it is applied to the two impedances connected in series.

Solution:-

Coil A : $V_{A}=100 \mathrm{~V} \quad I_{A}=8 A \quad P_{A}=120 \mathrm{~W}$
Coil B : $V_{B}=100 \mathrm{~V} \quad I_{B}=10 \mathrm{~A} \quad P_{B}=500 \mathrm{~W}$

$P_{B}=5001 \times 1$

For coil A, $Z_{A}=\frac{V_{A}}{I_{A}}=\frac{100}{8}=12.5 \Omega$
$P_{A}=I_{A}^{2} r_{A}$
$120=8^{2} \times r_{A}$
$r_{A}=1.875 \Omega$
$X_{A}=\sqrt{12.5^{2}-1.875^{2}}=12.36 \Omega$
For coil $\mathrm{B}, Z_{B}=\frac{V_{B}}{I_{B}}=\frac{100}{10}=10 \Omega$
$P_{B}=I_{B}^{2} r_{B}$
$500=10^{2} \times r_{B}$
$r_{B}=5 \Omega$
$X_{B}=\sqrt{10^{2}-5^{2}}=8.66 \Omega$

When coils A and B are connected in series,
$\bar{Z}=r_{A}+j X_{A}+r_{B}+j X_{B}$
$\bar{Z}=1.875+j 12.36+5+j 8.66$
$\bar{Z}=6.875+j 21.02$
$\bar{Z}=22.11 \angle 71.89^{\circ}$
$Z=22.11 \Omega$
$\varphi=71.89^{\circ}$
$I=\frac{V}{Z}=\frac{100}{22.11}=4.52 \mathrm{~A}$
$\mathrm{P}=I^{2}\left(r_{A}+r_{B}\right)=4.25^{2} \times 6.875^{2}=140.64 \mathrm{~W}$

Q3] b) Find current through 10Ω using Thevenin's theorem

Solution:-

(1) Calculation of $V_{T H}$

Applying KVL to mesh 1
$-100+40 I_{1}+20 I_{1}+30\left(I_{1}-I_{2}\right)=0$
$40 I_{1}+20 I_{1}+30 I_{1}-30 I_{2}=100$
$90 I_{1}-30 I_{2}=100$
Applying KVL to mesh 2
$30\left(I_{2}-I_{1}\right)+30 I_{2}+40 I_{2}+50=0$
$30 I_{2}-30 I_{1}+30 I_{2}+40 I_{2}=-50$
$-30 I_{1}+100 I_{2}=-50$
$30 I_{1}-100 I_{2}=50$
(2)

From (1) and (2) we get
$I_{1}=1.049$ and $I_{2}=-0.185$
$V_{T H}$ equation:-
$V_{T H}-30 I_{2}-20 I_{1}=0$
$V_{T H}-30(-0.185)-20(1.049)=0$
$V_{T H}=15.43 \mathrm{~V}$
(2) Calculation of $R_{T H}$
$R_{1}=20+30+\frac{20 \times 30}{30}=70 \Omega$

RI

$R_{2}=20+30+\frac{20 \times 30}{30}=70 \Omega$
$R_{3}=30+30+\frac{30 \times 30}{20}=105 \Omega$

$40|\mid 70=25.4545$
$105|\mid 40=28.9655$
$25.4545+28.9655=54.42 \Omega$
$R_{T H}=30.617 \Omega$
(3) Calculation of I_{L}
$I_{L}=\frac{15.43}{30.617+10}$
$I_{L}=0.3798 A$

OUR CENTERS :

Q3] c) With the help of equivalent circuit of a single phase transformer show how total copper loss can be represented in primary of a transformer.

Solution:-
Copper Loss:- This loss is due to the resistances of primary and secondary windings.

$$
W_{c u}=I_{1}^{2} R_{1}+I_{2}^{2} R_{2}
$$

Where, $R_{1}=$ Primary winding resistance
$R_{2}=$ secondary winding resistance.
Copper loss depends upon the load on the transformer and its proportional to square of load current of kVA rating of the transformer.

Q4] a) Find V_{L} using super position theorem

Solution:-

1) When 80 V is active

Mesh analysis to mesh 1
$-80+5 I_{1}+25 I_{1}+25\left(I_{1}-I_{2}\right)=0$
$55 I_{1}-25 I_{2}=80$

Mesh analysis to mesh 2
$-25\left(I_{2}-I_{1}\right)+30 I_{2}=0$
$25 I_{1}+5 I_{2}=0$
From (1) and (2) we get,
$I^{\prime}=0.444 A$

(2) when $2 A$ is active
$(25|\mid 30)=13.6363 \Omega$
$(13.6363|\mid 5)=3.6585 \Omega$
Hence we get

$I^{\prime \prime}=2 \times \frac{3.6585}{3.6585+25}=0.25531 A$
(3) when 100 V is active

$5 I_{1}+25 I_{1}+25\left(I_{1}-I_{2}\right)=0$
$55 I_{1}-25 I_{2}=0$
$-25\left(I_{2}-I_{1}\right)+30 I_{2}+100=0$
$25 I_{1}+5 I_{2}=-100$

From (1) and (2)
$I^{\prime \prime \prime}=-2.77 A$
current through V_{L} is:
$=0.444+0.25531-2.77$
$=-2.07069 \mathrm{~A}$
$I=2.07069 A$

Q4] b) In an R-L-C parallel circuit the current through resistor, inductor(pure) and capacitor are 20A, 15A and 40A respectively. What is the current taken from the supply?
Draw phasor diagram.
Solution:-
$I_{R}=20 A, I_{L}=15 A$ and $I_{C}=40 \mathrm{~A}$

To calculate the source current according to phasor diagram,
$I_{S}^{2}=I_{R}^{2}+\left(I_{L}-I_{C}\right)^{2}$
$I_{S}^{2}=20^{2}+(15-40)^{2}$
$I_{S}^{2}=1025$
$I_{S}=32.01 \mathrm{~A}$

Q4] c) Two sinusoidal source of emf have rms value E_{1} and E_{2}. When connected in series, with a phase displacement α the resultant voltage read on an electrodynamometer voltmeter 41.1 V and with one source reserved 17.52 V . When the phase displacement made zero a reading of 42.5 V is observed. Calculate E_{1}, E_{2} and α

Solution:-
$\overline{\mathrm{E}_{1}}=\mathrm{E}_{1} \angle 0^{\circ}$
$\overline{\mathrm{E}_{2}}=\mathrm{E}_{2} \angle \alpha^{\circ}$
When two sources are connected in series,
$\sqrt{E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \cos \alpha}=41.1$
$E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \cos \alpha=1689.21$
When one of the source is reversed,
$\sqrt{E_{1}^{2}+E_{2}^{2}-2 E_{1} E_{2} \cos \alpha}=17.52$
$E_{1}^{2}+E_{2}^{2}-2 E_{1} E_{2} \cos \alpha=306.95$
When phase displacement is made zero,
$\sqrt{E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \cos 0}=42.5$
$E_{1}+E_{2}=42.5$
Adding eqn (1) and (2) we get,
$2\left(E_{1}^{2}+E_{2}^{2}\right)=1996.16$
$E_{1}^{2}+E_{2}^{2}=998.08$
$\left(42.5-E_{2}\right)^{2}+E_{2}^{2}=998.08$
$1806.25-85 E_{2}+E_{2}^{2}+E_{2}^{2}=998.08$
$E_{2}^{2}-42.5 E_{2}^{2}+404.09=0$
Solving eq (2) from eq (1),
$E_{2}=28.14 \mathrm{~V}$ or $E_{2}=14.36 \mathrm{~V}$
$E_{1}=14.36 \mathrm{~V}$ or $E_{1}=28.14 \mathrm{~V}$
Subtracting eqn (2) from eqn (1),
$4 E_{1} E_{2} \cos \alpha=1382.26$
$4 \times 14.37 \times 28.14 \cos \alpha=1382.26$
$\cos \alpha=0.855$
$\alpha=31.24^{\circ}$

Q5] a) Prove that the power in a balanced three phase delta connected circuit can be deduced from the reading of two wattmeter. Draw relevant connections and vector diagrams. Draw a table to show the effect of power on wattmeter.

Solution:-
Given figure shows a balanced star-connected load, the load may be assumed to be inductive. Let $V_{R N}, V_{Y N}$, $V_{B N}$ be the three phase voltages. I_{R}, I_{Y}, I_{B} be the phase currents. The phase currents will lag behind their respective phase voltages by angle φ. Current through current coil of $W_{1}=I_{R}$

Voltages across voltage coil of $W_{1}=V_{R B}=V_{R N}+V_{N B}=V_{R N}-V_{B N}$
From the phasor diagram, it is clear that the phase angle between $V_{R B}$ and I_{R} is $\left(30^{\circ}-\varphi\right)$
$W_{1}=V_{R B} I_{R} \cos \left(30^{\circ}-\varphi\right)$
Current through current coil of $W_{2}=I_{Y}$
Voltage across voltage coil of $W_{2}=V_{Y B}=V_{Y N}+V_{N B}=V_{Y N}-V_{B N}$

From phasor diagram, it is clear that phase angle between $V_{Y B}$ and I_{Y} is $\left(30^{\circ}+\varphi\right)$
$W_{2}=V_{Y B} I_{Y} \cos \left(30^{\circ}+\varphi\right)$
But $\quad I_{R}=I_{Y}=I_{L}$
$V_{R B}=V_{Y B}=V_{L}$
$W_{1}=V_{L} I_{L} \cos \left(30^{\circ}-\varphi\right)$
$W_{2}=V_{L} I_{L} \cos \left(30^{\circ}+\varphi\right)$
$W_{1}+W_{2}=V_{L} I_{L} \cos \left(30^{\circ}-\varphi\right)+V_{L} I_{L} \cos \left(30^{\circ}+\varphi\right)$
$W_{1}+W_{2}=V_{L} I_{L}\left(2 \cos 30^{\circ} \cos \varphi\right)$
$\mathrm{P}($ active power $)=W_{1}+W_{2}=\sqrt{3} V_{L} I_{L}(\cos \varphi)$
Thus the sum of two wattmeter reading gives three phase power

MEASUREMENT OF POWER FACTOR BY TWO-WATTMETER METHOD

(1) Lagging power factor
$\mathrm{Pf}=\cos \varphi=\cos \left\{\tan ^{-1}\left(\sqrt{3} \frac{W_{1}+W_{2}}{W_{1}-W_{2}}\right)\right\}$
(2) Leading power factor
(3) $\mathrm{Pf}=\cos \varphi=\cos \left\{\tan ^{-1}\left(-\sqrt{3} \frac{W_{1}+W_{2}}{W_{1}-W_{2}}\right)\right\}$

OUR CENTERS :

Q5] b) A 5kVA 200/400, 50 Hz single phase transformer gave the following test results.

OC test on LV side	200 V	0.7 A	60 W
SC test on HVside	22 V	16 A	120 W

1. Draw the equivalent circuit of the transformer and insert all parameter values.
2. Efficiency at 0.9 pf lead and rated load.
3. Current at which efficiency is maximum.

Solution:- 1) Equivalent circuit of the transform and parameters
From OC test(meters are connected on LV side i.e. primary)
$W_{i}=60 w \quad V_{1}=200 \mathrm{~V} \quad I_{0}=0.7 \mathrm{Am}$
$\cos \varphi_{0}=\frac{W_{i}}{V_{1} I_{0}}=\frac{60}{200 \times 0.7}=0.43$
$\sin \varphi_{0}=\left(1-0.43^{2}\right)^{0.5}=0.9$
$I_{w}=I_{o} \cos \varphi_{o}=0.7 \times 0.43=0.3 \mathrm{~A}$
$R_{O}=\frac{V_{1}}{I_{w}}=\frac{200}{0.3}=666.67 \Omega$
$I_{\mu}=I_{o} \sin \varphi_{o}=0.7 \times 0.9=0.63 \mathrm{Am}$
$X_{o}=\frac{V_{1}}{I_{\mu}}=\frac{200}{0.63}=317.46 \Omega$
From SC test (meters are connected on HV side i.e. secondary)
$W_{s c}=120 w \quad V_{s c}=22 V \quad I_{s c}=16 A$
$Z_{02}=\frac{V_{s c}}{I_{s c}}=\frac{22}{16}=1.375 \Omega$
$R_{02}=\frac{W_{s c}}{I_{S C}^{2}}=\frac{120}{16^{2}}=0.47 \Omega$
$X_{02}=\left(Z_{02}{ }^{2}-R_{02}{ }^{2}\right)^{0.5}=\left(1.375^{2}-0.47^{2}\right)^{0.5}=1.29 \Omega$
$K=\frac{400}{200}=2$
$R_{01}=\frac{R_{02}}{K^{2}}=\frac{0.47}{4}=0.12 \Omega$
$X_{01}=\frac{X_{02}}{K^{2}}=\frac{1.29}{4}=0.32 \Omega$
2)Efficiency at rated load and 0.9 pf leading
$W_{i}=60 \mathrm{w}=0.60 \mathrm{kw}$

Since meters are connected on secondary in SC test,
$I_{2}=\frac{5 \times 1000}{400}=12.5 \mathrm{~A}$
$W_{C u}=I_{2}^{2} R_{02}=12.5^{2} \times 0.47=73.43 W=0.073 \mathrm{~kW}$
$\mathrm{x}=1 \mathrm{pf}=0$
$\% \eta=\frac{x \times \text { full load KVA } \times \mathrm{pf}}{(\mathrm{x} \times \text { full load KVA } \times \mathrm{pf})+\mathrm{W}_{\mathrm{i}}+\mathrm{x}^{2} \mathrm{~W}_{\mathrm{cu}}} \times 100$
$\% \eta=\frac{1 \times 5 \times 0.9}{1 \times 5 \times 0.9+0.06+1 \times 0.073} \times 100$
$\% \boldsymbol{\eta}=\mathbf{9 7 . 1 3} \%$
Regulation at rated load and 0.9 pf load,
$\cos \varphi=0.9$
$\sin \varphi=0.44$
$\%$ regulation $=\frac{I_{2}\left(R_{02} \cos \varphi-X_{02} \sin \varphi\right)}{E_{2}} \times 100$
$\%$ regulation $=\frac{12.5(0.47 \times 0.9-1.29 \times 0.44)}{400} \times 100$
\% regulation $=\mathbf{- 0 . 4 5} \%$
Current at maximum efficiency,
$W_{i}=I_{2}^{2} R_{02}$
$I_{2}=\sqrt{\frac{W_{i}}{R_{02}}}=\sqrt{\frac{60}{0.47}}=11.3 \mathrm{~A}$

Q5] c) Prove that if the phase impedance are same, power drawn by a balanced delta connected load is three times the power drawn by the balanced star connected load. (4)

Solution:-

Let a balanced load be connected in star having impedance per phase as $Z_{p h}$.
For a star-connected load
$V_{p h}=\frac{V_{L}}{\sqrt{3}}$
$I_{p h}=\frac{V_{p h}}{Z_{p h}}=\frac{V_{L}}{\sqrt{3} Z_{p h}} \quad \Rightarrow \quad I_{p h}=I_{L}=\frac{V_{L}}{\sqrt{3} Z_{p h}}$
Now, $P_{Y}=\sqrt{3} V_{L} I_{L} \cos \varphi=\sqrt{3} \times V_{L} \times \frac{V_{L}}{\sqrt{3} z_{p h}} \times \cos \varphi=\frac{V_{L}^{2}}{z_{p h}} \cos \varphi$
For a delta-connected load
$V_{p h}=V_{L}$
$I_{p h}=\frac{V_{p h}}{Z_{p h}}=\frac{V_{L}}{Z_{p h}} \quad \Rightarrow \quad I_{p h}=\sqrt{3} I_{L}=\sqrt{3} \frac{V_{L}}{Z_{p h}}$
Now, $P_{\Delta}=\sqrt{3} V_{L} I_{L} \cos \varphi=\sqrt{3} \times V_{L} \times \sqrt{3} \frac{V_{L}}{Z_{p h}} \times \cos \varphi=3 \frac{V_{L}^{2}}{Z_{p h}} \cos \varphi=3 P_{Y}$
$P_{Y}=\frac{1}{3} P_{\Delta}$
Thus, power consumed by a balanced star-connected load is one third of that in the case of deltaconnected load.

Q6] a) Three identical coils each having a reactance of 20Ω and resistance of 10Ω are connected in star across a 440V three phase line. Calculate for each method:

1. Line current and phase current.
2. Active , reactive and apparent power.
3. Reading of each wattmeter connected to measure the power.

Solution:- $X_{L}=20 \Omega$

$$
\mathrm{R}=10 \Omega \quad V_{L}=400 \mathrm{~V}
$$

1. LINE CURRENT AND PHASE CURRENT.
$V_{p h}=\frac{V_{L}}{\sqrt{3}}=\frac{400}{\sqrt{3}}=230.94 \mathrm{~V}$
$\overline{Z_{p h}}=R+j X_{L}=10+j 20$
$\overline{Z_{p h}}=22.3606 \angle 63.4349^{\circ}$
$\varphi=63.4349^{\circ}$
Power factor $=\cos \varphi=\cos \left(63.4349^{\circ}\right)=0.44721$
$I_{p h}=\frac{V_{p h}}{Z_{p h}}=\frac{230.94}{22.3606}=10.3279 \mathrm{~A}$
$I_{p h}=I_{L}=10.3279 \mathrm{~A}$
2. Active, Reactive and apparent power.

$$
\text { Reactive power }(Q)=\sqrt{3} I_{L} V_{L} \sin \varphi=\sqrt{3} \times 400 \times 10.3279 \times \sin (63.4349)
$$

$$
=6399.962 \mathrm{~W}
$$

$$
\begin{aligned}
\text { Active power }(\mathrm{P}) & =\sqrt{3} I_{L} V_{L} \cos \varphi=\sqrt{3} \times 400 \times 10.3279 \times \cos (63.4349) \\
& =3199.957 \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
\text { Apparent power(S) } & =\sqrt{3} I_{L} V_{L}=\sqrt{3} \times 400 \times 10.3279 \\
& =7155.3790 \mathrm{~W}
\end{aligned}
$$

3. Readings of 2 wattmeter

$$
\text { Active power }(\mathrm{P})=\sqrt{3} I_{L} V_{L} \cos \varphi=\sqrt{3} \times 400 \times 10.3279 \times \cos (63.4349)
$$

= 3199.957 W
$w_{1}+w_{2}=3199.9570$
Also, $\tan \varphi=\sqrt{3} \frac{w_{1}-w_{2}}{w_{1}+w_{2}}$
$\tan (63.4349)=\sqrt{3} \frac{w_{1}-w_{2}}{3199.9570}$
$w_{1}-w_{2}=3694.9841$
From (1) and (2) we get,
$w_{1}=3447.47055 \mathrm{w}$
$w_{2}=247.51355 \mathrm{w}$

Q6] b) A series resonant circuit has an impedance of 500Ω at resonance frequency. The cut of frequency observed are 10 kHz and 100 Hz , Determine:

1. Resonant frequency

2. Value of R, L and C.
3. Q factor at resonance

Solution:- $\mathrm{R}=500 \Omega \quad f_{1}=100 \mathrm{~Hz} \quad f_{2}=10 \mathrm{kHz}$

1. RESONANCE FREQUENCY.
$\mathrm{BW}=f_{2}-f_{1}=10,000-10=9900 \mathrm{~Hz}$
$f_{1}=f_{0}-\frac{R}{4 \pi L}$
$f_{2}=f_{0}+\frac{R}{4 \pi L}$

Adding (1) and (2),
$f_{1}+f_{2}=2 f_{0}$
$f_{0}=\frac{f_{1}+f_{2}}{2}=\frac{10+10000}{2}=5050 \mathrm{~Hz}$
2. Values of R, L and C
$R=500 \Omega$
$\mathrm{BW}=\frac{R}{2 \pi L}$
$9900=\frac{500}{2 \pi L}$
$\mathrm{L}=8.038 \mathrm{mH}$
$X_{L_{0}}=2 \pi f_{0} L=2 \pi \times 5050 \times 8.038 \times 10^{-3}=255.05 \Omega$
At resonance , $X_{L_{0}}=X_{c_{0}}=255.05 \Omega$
$X_{C_{0}}=\frac{1}{2 \pi f_{0} C}$
$255.05=\frac{1}{2 \pi \times 5050 \times C}$
$C=0.12 \mu F$
3. QUALITY FACTOR.
$Q_{0}=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{500} \sqrt{\frac{8.038 \times 10^{-3}}{0.12 \times 10^{-6}}}=0.5176$
$Q_{0}=0.5176$

Solution:-

